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Evaluation of the Bloch density matrix for a charged oscillator 
in a magnetic field by canonical transformations 

M A Z Habeeb 
Nuclear Physics Department, Nuclear Research Centre, Tuwaitha, Baghdad, Iraq 

Received 30 March 1987 

Abstract. The problem of a charged particle moving in an anisotropic harmonic oscillator 
potential in the presence of a constant external magnetic field is reduced to that of a particle 
in an anisotropic oscillator by using canonical transformations. The Bloch density matrix 
for the original problem is then exactly evaluated by transforming the well known result 
for the anisotropic oscillator with the aid o f  the integral kernel corresponding to the 
canonical transformation under consideration. 

1. Introduction 

The problem of a charged particle moving in an  anisotropic three-dimensional harmonic 
oscillator potential in the presence of a constant external magnetic field has received 
much attention in recent years. This may be attributed to the fact that this problem 
can be considered as a model representing different situations in physics. For example, 
electrons in an anisotropic metal lattice subjected b an external constant magnetic 
field can be represented by such a model. Hence, the quantum-mechanical analogue 
of the problem above is expected to have many applications. 

One of the quantities of importance for performing calculations with this model is 
the full canonical or Bloch density matrix. In  the past, calculations of this quantity 
have been carried out for a free electron in a magnetic field by Sondheimer and Wilson 
(1951) and for the anisotropic harmonic oscillator by Feynman and Hibbs (1965). 
Recently, March and Tosi (1985) obtained a closed analytic expression for the Bloch 
density matrix for an  electron in an  isotropic harmonic oscillator potential in the 
presence of a constant external magnetic field of arbitrary strength by extending the 
method of solving the Bloch equation for the system developed earlier by Sondheimer 
and  Wilson (1951). More recently, the Bloch density matrix for the same problem was 
obtained directly from the analytical evaluation in polar coordinates of the correspond- 
ing path integral expression for the non-relativistic propagator of the system (Manoyan 
1986). However as has been noted by Manoyan (1986), the applicability of this method 
is restricted to the special case of an isotropic harmonic oscillator. Also, we have 
found that the method of March and Tosi (1985) leads to coupled differential equations 
which are difficult to solve when extended to the general anisotropic case. 

In the present work, it is our intention to present an alternative method for exactly 
evaluating the Bloch density matrix for the general anisotropic case. This is achieved 
by exploiting the analogy between the present problem and that of a particle in a 
cranked harmonic oscillator potential well known in nuclear physics (Glas et a1 1978, 
Habeeb 1987a). This allows us to use the method of canonical transformations, as for 
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the cranked harmonic oscillator, to transform the present problem to that of a particle 
moving in an  anisotropic oscillator potential for which the Bloch density matrix is 
already known (Feynman and  Hibbs 1965). The Bloch density matrix for the original 
problem is then exactly evaluated by transforming the expression for the anisotropic 
oscillator with the aid of the integral kernel corresponding to the canonical transforma- 
tion under consideration. 

2. The canonical transformation method 

The Hamiltonian operator of the system under consideration is 

A = ( 1 / 2m )[ ( $I + t mu, x212 + ( $2 - 4 mu, x, ) *  + $:I+ i m ( w :x: + w : x i  + w : xi) (1) 

where w ,  = / q l B / m c  is the cyclotron frequency associated with the particle of charge 
q and mass m, and we have chosen the symmetric gauge, A = ( - 4 B x 2 ,  ~ B X , ,  0), for 
the vector potential associated with the constant external magnetic field B directed 
along the 3-axis. It can easily be shown that (1) may salso be written as 

(2) fi = ( i 2 / 2 m )  +im(wj2x:+ w i 2 x : +  wj2x:) - wi, 

where w : 2  = w f +  U‘ ;  ( i  = 1 ,2 ,3 ) ,  w = ; U ,  is the Larmor frequency and i, = xlp12 -x2  $, 
is the component of the angular momentum operator along the 3-axis. The Hamiltonian 
operator ( 2 )  is equivalent to that of a particle moving in an anisotropic harmonic 
oscillator potential with frequencies w : ;  ( i  = 1, 2 ,3 )  cranked about the 3-axis with the 
Larmor frequency w (Glas er a1 1978). Hence, the method of canonical transformations 
as applied for the latter problem (Glas er a1 1978, Habeeb 1987a) should also be 
applicable to the present one. Since some of the formulae of Glas er a1 (1978) are 
also needed in the present work, we briefly review their work in the rest of this section 
with emphasis on the main results that are needed here. 

First we note that (2) can be separated as 

ci=fiw+A3 (3) 

where 

It follows that the eigenfunctions of fi can be factorised in the form 

Y ( r )  = +(XI, x2)4(x3) (5) 

where +Jx3) is the well known eigenfunction of the one-dimensional oscillator Hamil- 
tonian H ,  and +(x,, x2) is the eigenfunction of Am to be determined. Now, we perform 
the canonical transformation 

(6) 

Requiring that the transformed operator A; (x i ,  x i ,  $i , $;) takes the form of the 
Hamiltonian operator for two uncoupled harmonic oscillators, or 

X: = Ax, + Bpi $: = $, + cx, i, j =  1, 2 ;  j #  i. 
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and that the transformation ( 6 )  is unitary, we obtain three equations for the three 
unknowns A, E and C whose solution gives (Glas et a1 1978) 

A = ;[ 1 + (U;’ - w { ’ ) / S ]  

B = 2 w / m S  (8) 

c = ( m/4w)(wi2 - U{’  - S )  

where 

S = sign(w4 - w { ) [ ( w i ’ -  w i ’ ) ’+  8w2(w;’+ w;’ ) ]” ’ .  ( 9 )  

After some lengthy manipulations, the new oscillator frequencies R1,  R2 and masses 
ml, m, can be shown to be (Glas er al 1978) 

, - : (w’I2+ w ; * ) + w 2 - $ s  

0: = f ( w i 2 + w ; * )  + w ’ + f S  

In deriving (lo),  the helpful formula 

(a; - 0 ;’ + U ’ ) (  nf - 0;’ + w ’) = 4 W 2 R f  i = l , 2  (11) 

which has also proved to be useful in the present work, has been used. Creation and 
annihilation operators can be introduced for fi: in the usual manner. In terms of 
these operators the excited states $ n , n Z ( ~ l ,  x2) can be constructed and an integral 
representation for them can also be derived in the form 

The functions (x{xilnlnz) are the well known oscillator eigenfunctions of fi: in the 
x,xz representation and the integral kernel in (12) is given by 

(x,  x21x:x;) = ( 2 ~ h l E I ) - ’  exp[(i/ hE)(-iAx,x, + x , x i  + x{x2 - xix;)]. (13) 

For more details about these solutions, their properties and recurrence relations the 
reader is referred to Glas et a1 (1978). 

3. Evaluation of the Bloch density matrix 

The Bloch density matrix C ( r ,  r,; p )  for the problem described by Hamiltonian (1) is 
defined by 

where the *,,,,,,, are the solutions of the Schrodinger equation 
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and the E~~~~~~ are their corresponding single-particle energies, while /3 = ( k B T ) - I .  
Using (3)  and ( 5 ) ,  (14) can be written as 

(16) 

(17) 

c2(x39 x30; P )  dn3(x3)+:,(x30) exp(-P&n3) (18) 

EnIn:n, = Enln2  + E n ,  (19) 
and the +,,3 are one-dimensional harmonic oscillator eigenfunctions with corresponding 
eigenvalues E,, = (n ,+:)hw, .  The expression for C2(x7,  xTo; P )  is the well known Bloch 
density matrix for a one-dimensional oscillator and does not concern us here. Using 
(12), (17) can be written as 

c(r,  rO;  p )  = c l ( x l ,  x 2 ,  x l O ,  x20; p)c2(x?, x30; p )  
where 

C I ( X I , X ~ , X ~ O ~  ~ 2 0 ;  P ) =  C 4 n l n 2 ( x l ~  x2)4:,n2(x1O, ~ 2 0 )  eXP(-PEnln2) 
nl"2 

n ,  

C l ( X 1 ,  x 2 ,  XI09 x20; P I  

= 5 dx', dxi  5 dxlo dx;o(xlx21xjxi) 
-1 - X  -x 

~ ~ . ~ I , , ~ 2 " / ~ ; 0 ~ ; 0 ~ ~ I ( ~ x ~ ,  x i ,  Xlo, xio; P )  (20) 
where 

It  is easily seen that, since the brackets in (21) are two-dimensional oscillator eigenfunc- 
tions of fi: and the E , , , , ~  are their corresponding eigenvalues, then 
C { ( X { , X ~ , X ' , ~ , X ~ ~ ;  p )  of (21) is the well known Bloch density matrix for a two- 
dimensional oscillator (Feynman and Hibbs 1965). Using this result, together with 
(13), in (20) the four-dimensional integral can be reduced to the evaluation of Gaussian 
integrals, giving 

C I ( X 1 ,  x2, XI07 xzo; P )  
= N (  p )  e x p { ( m / 2 h ~ (  p ) ) [  a I  ( x i +  xfo) + a , (x t+  x:") 

+ a3 XI XI0 + a 4  x2 X2(, + as (x2 XI0 - XI X?") + a6 (XI X? - XI0 X2")I l  (22) 
where the a are functions of p. The expressions for N ( P ) ,  D ( p )  and the a can be 
greatly simplified after some manipulations in which ( 1  1 )  is used, with the results 

(23) N ( P )  = (m/27r i f i ) ( l /w~ '" (  ~ ) ) ( n i  -n f )  

- { [ ( U { ' -  us'))'+ wf(w12+ w i ' ) ] / w f w l , w i }  sinh( h p n , )  sinh( hpn , )  

D(  p )  = 2 - 2 cosh( h p n l )  cosh( h p n z )  

(24) 
a I  =[(n:-R:)/wfwi][(R2wj -R,w;) cosh(hpR2) s inh(hpR,)  

+ ( f l , w ; - n , w ' , )  cosh(hpR,)  s inh(hpn2)]  
a2= [ ( n : - n f ) / o f w l ] [ ( n , w i - s r , w i )  cosh(hpR2) s i n h ( h p 0 , )  

+(Rzw: - n l w i )  cosh(hpR,)  s inh(hpnr) ]  
a3 = [2 (n : -n : ) /wfwS] [ (n lw{  - f lzw;)  sinh( h p n , )  

- ( f12w;  - 0 , ~ ; )  sinh(hpR,)]  
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a, = [2(Rf  -fl:)/w,’w’,][(R,wi - f l , w ; )  sinh(hpR,) - ( R 2 w ;  - 0 , w l )  s inh(hpR,) ]  

c y s  = [2i(R: - R:)/w,][cosh( h p R , )  -cosh( hpfl,)] 

a6 = [ i ( R f - :)/ U,]{ 2 + [ ( w ,’ + w I’ + w 5’11 w w a ]  
x sinh( hpR,)  sinh( hpR,) - 2  cosh( hpR,)  cosh( hpRJ}. (25) 

It should also be stated here that the calculation of the four-dimensional integral in 
(20) can be simplified if some care is given to the order of performing the one- 
dimensional integrals. One can easily check that in the isotropic case, w ,  = w 2 ,  (22) gives 

lim C,(X,, x2, XI03 x20; P )  
w , + w >  

4. Partition function and energy eigenvalues 

where Z,( p )  is the well known partition function for a one-dimensional oscillator and 

Using (22) we obtain 

Z , ( p )  = [4 s inh (hpf l , / 2 )  sinh( hp0 , /2 ) ] - ’ .  (29) 

In the special isotropic case, w ,  = w 2  = w[J,  (29) reduces to that of Darwin (1931) (see 
also Manoyan 1986). It is also possible to write (29) in  the form 

Z, ( p I = C exp[-(n, + f )  hpfllI C exp[-(n2 + 4)hpn2I (30) 
“ I  “ Z  

from which the energy eigenvalues can be obtained as 

= h [  ( n ,  +;,a, + (n, + 9Q,]. (31) 
This result is in agreement with that obtained from the solution of the eigenvalue 
problem for H L  of ( 7 )  (see also Glas et a1 1978). In the special isotropic case, 
w 1 = w 2 = w w o ,  (31) gives 

(32) lim = h [  ( n I  + n, + 1)f l  + ( n ,  - n , ) w ]  
w , - w ?  

where Cl’ = w i +  w’ ,  which agrees with the result of Manoyan (1986) i f  we identify his 
1 and n with our n, and n, respectively. 



5554 M A Z Habeeb 

5. Discussion and conclusions 

The present work shows how the analogy between a charged oscillator in a constant 
external magnetic field and the cranked harmonic oscillator well known in nuclear 
physics (Glas et a1 1987) could be exploited to exactly evaluate the Bloch density 
matrix for the former case using canonical transformations. This also tempts us to 
treat other problems associated with a charged oscillator in a magnetic field using the 
same analogy. For example, the recent construction of coherent states for the cranked 
harmonic oscillator (Habeeb 1987a) could also be considered, by this analogy, as a 
construction of coherent states for the problem of a charged oscillator in a constant 
external magnetic field. Also, since the Bloch density matrix and the non-relativistic 
propagator are simply related (Feynman and Hibbs 1965) one may consider the present 
work as an exact evaluation of the latter quantity for an anisotropic charged oscillator 
in a constant magnetic field (cf Davies 1985). 

Motivated by the success of the method of canonical transformations as applied 
here, we hope to treat more complicated situations, such as that of a charged oscillator 
in time-dependent electric and magnetic fields, in a future work (Habeeb 1987b). 
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